
1

DEVELOPMENT OF AUTONOMOUS SYSTEMS FOR

INTELLIGENCE-GATHERING MISSIONS

Neo Hao Jun1, Ng Jia Wei2, Tan Yu Yao1, Eu Jun Liang Benjamin3, Ng Woon Ting Elizabeth3,

Jeremy Tian Wen Loong3

,

1 Hwa Chong Institution (High School), 661 Bukit Timah Road, Singapore 269734
2 Nanyang Girls’ High School, 2 Linden Drive, Singapore 288683

3 Defence Science and Technology Agency, 1 Depot Road, Singapore 109679

ABSTRACT

Given the myriad of advantages Unmanned Ground Vehicles (UGVs) offer in military land

operations and combat, this project aims to develop a solution that allows UGVs to assist in

intelligence-gathering in unknown or unsafe territories. Basic mapping of the area is done

through a Simultaneous Localisation and Mapping algorithm on the UGV, and the UGV’s

video feed is then streamed to a central receiver where it is passed through a computer vision

model. Through our tests, we have shortlisted eight optimal video transcoding options that

achieve a 99% performance on our model with minimal bandwidth usage when streaming the

UGV’s video feed. Our trained model also managed to achieve a mean Average Precision

(mAP) of 0.437 when considering an Intersection Over Union (IOU) of 50% to 95% overlap ,

with a majority of the detections having a confidence of 0.4 or higher.

TABLE OF CONTENTS

ABSTRACT 1

TABLE OF CONTENTS 1

INTRODUCTION 2

MATERIALS AND METHODS 2

Hardware Selection 2

Hardware Control 3

Simultaneous Localisation and Mapping (SLAM) 4

Transcoding UGV Stream 4

Training and Assessing the CV Model 5

Video Wall 5

RESULTS AND DISCUSSION 6

Extension of Hardware Control of the Educational Robot Kit 6

Outcome of SLAM Algorithm 6

Analysis of Transcoding Settings 7

Performance of CV Model 8

CONCLUSION 10

Recommendations for transcoder configurations 10

Real-Life Applicability of CV Model 10

LIMITATIONS OF STUDY 11

ACKNOWLEDGEMENTS 11

2

REFERENCES 12

ANNEX 13

INTRODUCTION

With the advent of a new technological age over the past few decades, Unmanned Ground

Vehicles (UGVs) have become a centrepiece in many military and civilian applications around

the world and have already been playing a critical role in military land operations and combat.

Controlled by an onboard controller, either through independent Artificial Intelligence (AI) or

remote control by human operators, UGVs offer many advantages especially in areas that pose

a risk to human safety, such as contaminated radioactive sites, areas under terrorist attack, or

new areas that have yet to be explored extensively. Under such circumstances, UGVs’

autonomy ensures that intelligence-gathering can proceed without interruption.

Figure 1. An example of a UGV conducting intelligence-gathering in combat.

Figure 2. An example of a CV model conducting unattended baggage detection.

This project thus aims to develop a solution that allows a UGV to navigate and map a terrain

via a Simultaneous Localisation and Mapping (SLAM) algorithm, while gathering information

that can be broadcasted as a live stream back to a human operator, negating the need for a

physical human to be present on site. This function will be enhanced through the use of

computer vision (CV) to detect specific items specified by the human operator, as seen in

Figure 2, reducing the potential for errors stemming from operator inattention or fatigue, and

also allowing the system to act as a “force multiplier”, for one human operator can now easily

watch over the data streams of multiple UGVs simultaneously.

In addition, since the UGV is mobile, it must rely on a mobile network to broadcast its live

stream. Yet, network bandwidth and stability is oftentimes unpredictable, which will greatly

affect the quality and speed of the stream, a negative effect that trickles down to the

performance of the CV model. With limited bandwidth available, this project seeks to optimise

the video transcoding so as to allow a scalable, consistent, and low-latency video stream from

the UGV that does not impede object detection severely.

MATERIALS AND METHODS

Hardware Selection

Based on size, the UGV market is divided into small (4.5 to 90kg), medium (100 to 250 kg),

large (250 to 500kg), very large (500 to 1000kg), and extremely large (> 1000 kg). Small UGVs

(SUGVs) would be most suited for the aforementioned application, for their small size allows

3

them to access tight spaces that their bigger counterparts are unable to, producing a more

representative and comprehensive map of the site. Furthermore, due to the comparatively low

cost of such vehicles, more SUGVs can be sent to a specific location to gather information

simultaneously, an increase in coverage that would be especially useful in data-gathering

applications.

Such SUGVs are abundant in consumer robotics, with Educational Robot Kits serving as one

such example. Equipped with four mecanum wheels capable of delivering 19W of power each,

the Educational Robot Kit, even with its small size, is able to carry a relatively large payload

while manoeuvring omnidirectionally around tight spaces. This makes it suitable for the

aforementioned application, which would involve the attachment of multiple payloads to aid

the SLAM and data-gathering workflows.

A commercial off-the-shelf (COTS) product is chosen because at such a small scale, the

performance benefit of opting for a military off-the-shelf (MOTS) or bespoke system is

negligible despite the substantial increase in cost. Besides, this project is intended to be

platform-agonistic, and the Educational Robot Kit only serves as a proof of concept (PoC) that

can be easily repackaged for alternative SUGV options, or even expanded into larger, more

robust systems and applications.

Hardware Control

Typically, the Educational Robot Kit is controlled via an application, which, due to its

simplicity, poses a challenge when unsupported sensors and peripherals have to be used or

when more complex algorithms have to be implemented, both of which would be the case in

this project.

Figure 3. Connecting the Raspberry Pi to the Robot Kit via the USB connection mode.

As such, we opted to interface with the robot via the Raspberry Pi using a compatible software

development kit (SDK), extending the capabilities of the robot kit through connection with

external peripherals such as the Intel® RealSense™ D435i and T265 for the SLAM and CV

algorithms.

4

Simultaneous Localisation and Mapping (SLAM)

Figure 4. Intel® RealSense™ Depth Camera D435i (left) and Tracking Camera T265 (right).

The Intel® RealSense™ Tracking Camera T265 and Depth Camera D435i, pictured above in

Figure 4, are used in conjunction with each other to provide the SUGV with a spatial

understanding of its environment and its own position and orientation in that space. The Intel®

RealSense™ Tracking Camera T265 estimates the SUGV’s position and orientation relative to

a gravity-aligned static reference frame, while the Intel® RealSense™ Depth Camera D435i

performs stereo matching to obtain a dense cloud of 3D scene points. Together this input can

be used to obtain a point cloud that is registered with respect to a gravity-aligned static

reference frame. The full algorithmic stack has been detailed below in Figure 5 and the

proceeding paragraphs.

Figure 5. Conceptual overview of SLAM and navigation algorithmic stack, powered by ROS2.

The Robot Operating System 2 (ROS2) ROS2 wrapper for Intel® RealSense™ devices

provides ROS2 nodes for using the aforementioned Intel® RealSense™ cameras, meaning that

data from these devices can be easily obtained and published onto a ROS2 network. By doing

so, data from these cameras can be passed through the ROS-enabled Google Cartographer, a

system that supports real-time SLAM with the Intel® RealSense™ cameras.

The SLAM data is then used to create a map that is used for robot navigation via Nav2, a ROS

navigation stack that allows for robot wayfinding with obstacle avoidance and dynamic path

planning. This navigation information will then be piped back to the robot via a ROS2 message

received by the Raspberry Pi. The feed from these cameras also double up as the video stream

that will be transcoded and passed through the object-detection model, as detailed in the

following sections.

Transcoding UGV Stream

The video streams from the UGV are broadcasted to a transcoder through the real-time

streaming protocol (RTSP). The transcoding engine used was Wowza Streaming Engine due

5

to its accessible interface and ability to take input and output streams through many different

protocols such as RTSP. The RTSP protocol is used due to its wide usage in Internet Protocol

(IP) cameras which allows for easy scalability.

To identify which transcoding configuration is optimal, we adjusted the video stream’s bitrate

for each resolution (160p, 240p, 360p, 720p) and each frame rate setting (10 fps, 30 fps). We

then rated the performance of each output stream after being annotated with bounding boxes

from the CV model through the following criteria: latency, the approximate performance of the

model and average bandwidth usage. The optimal transcoding configuration at each resolution

and frame rate setting was the one that resulted in an approximate performance of 99% from

the CV model at the lowest bitrate possible. The CV model’s performance is assessed based on

the stability of its detection of unattended bags: if an unattended bag is detected in 99% of

consecutive test frames streamed from the UGV, the model is deemed to have an approximate

performance of 99%.

We then tested 2 different combinations of streams on a 2x2 video wall to see how bitrate is

changed when all 4 screens are displayed at the same time, as compared to when only 1 screen

is displayed. All streams are taken with a stationary camera and no movement in the video

captured.

Training and Assessing the CV Model

YOLOv5 is a modern object detection model known for its fast speed, high accuracy, ease of

installation and use. It is pre-trained on the Common Objects in Context (COCO) database, a

large-scale, challenging, and high-quality object detection, segmentation, and captioning

dataset.

Our CV model builds upon the YOLOv5, ingesting the transcoded RTSP stream to obtain raw

frames that can be used for inference. For this project, the CV model is trained to detect

unattended bags in an unknown territory, though the model can be easily re-trained for

alternative use cases when the need arises.

Specifically, using a basic unattended bag framework, the model compares the pixel distance

between identified humans and bags, alerting the user if it picks out a bag that is a distance

away from the surrounding individuals. When an alert needs to be sent out, the CV model

annotates the bounding boxes of unattended bags onto the original stream. To allow the

operator to verify the detection made by the model, bounding boxes of humans and other bags

are also drawn, but are not as conspicuous. These annotated frames are then rebroadcasted to

RTSP through FFmpeg for ease of further processing.

As an extension to the unattended bag detection model, we have also trained the YOLOv5

model on a custom rotary-winged UAV dataset made by Mehdi Özel. The training produced a

fairly consistent and robust UAV detection model and was assessed using a self-labelled test

dataset made by picking out 50 frames from online footage of drones.

Video Wall

With multiple resulting output streams from the CV model, it is important to display the

consolidated streams neatly on a video wall for observation. We opted for the Milestone

XProtect Smart Wall, which enables us to manually tweak the settings for the video streams

depending on the context and available bandwidth at that moment.

https://github.com/dasmehdix/drone-dataset

6

RESULTS AND DISCUSSION

Extension of Hardware Control of the Educational Robot Kit

While present workarounds do allow for customised control of the Educational Robot Kits,

such interfaces still fail to provide the low-level control that would be useful in fully modifying

the Robot for specialised missions. To resolve this, the CAN BUS port on the Robot, as

depicted below in Figure 6, can be intercepted to send signals to individual components on the

Robot rather than running our code through the Original Equipment Manufacturers (OEM)

frameworks.

Figure 6. CAN BUS port on the Robot Kit (1: GND, 2: +12V, 3: CANH, 4: CANL).

We have managed to receive, interpret, and send individual commands through the Robot kit’s

CAN network using the Raspberry Pi 4B and Waveshare’s RS485 CAN HAT. Our findings on

the various IDs we managed to map out the CAN Network as detailed below in Table X.

Table 1. CAN IDs of various Robot Kit components.

CAN ID Description CAN ID Description CAN ID Description

0x200 Self-assigned 0x204 Blaster 0x214 Chassis left

armour

0x201 Intelligent

controller

0x211 Chassis rear

armour

0x215 Gimbal right

armour

0x202 Motion

controller

0x212 Chassis front

armour

0x216 Gimbal left

armour

0x203 Gimbal 0x213 Chassis right

armour

0x221 Infrared distance

sensor

Although we found that the CAN network on the Robot could indeed be accessed, a working

implementation would involve reproducing the OEM’s proprietary communication protocols

on the software side to control the Robot without the OEM’s low-level controller. Due to the

short-term nature of this project, the discoveries we have made on this front remain a PoC that

should be expanded upon in future work.

Outcome of SLAM Algorithm

Based on our tests, our SLAM algorithm works as expected, with the Google Cartographer for

ROS generating an output map similar to the one shown below in Figure 7. Using the map

generated by the SLAM stack, our navigation system enables the Robot to be successfully

controlled by a remote operator through inputting desired waypoints, enabling semi-

autonomous data gathering to be conducted in areas of interest.

7

Figure 7. Example of a map generated by the Google Cartographer for ROS.

Analysis of Transcoding Settings

We tested different resolution settings and decided on 160p, 240p, 360p and 720p as the most

suitable. Too high of a resolution is unnecessary and requires too much bandwidth, while too

low of a resolution will result in the CV model being unable to detect unattended bags.

Through our tests, we have found that the following optimal transcoding configurations that

achieve an approximate CV model performance of 99%, as noted in Table 2. A full list of

results can be found in the Annex.

Table 2. Optimal configurations for various resolution and fps settings.

Configuration Performance

Resolution Codec Frame rate

/ fps

Bitrate

/ kbps

Latency

/ s

CV

performance

Bandwidth

Usage /

kbps

 720p H264 30 (source) 200 2.5 ~ 99% ~ 300

720p 10 120 4 ~ 100

360p 30 (source) 80 2.5 ~ 100

360p 10 50 4.5 ~ 60

240p 30 (source) 50 2.5 ~ 60

240p 10 50 3 ~ 70

160p 30 (source) 50 2 ~ 60

160p 10 30 3.5 ~ 40

As seen, the latency and quality must be balanced with the scale of streaming as these two

factors are inversely proportional to each other, so as to accommodate the limited bandwidth

available. In addition, a higher quality allows for more accurate detection by CV but results in

much greater bandwidth usage, buffering, and latency, making it more difficult to scale up the

number of streams. Conversely, a lower-quality video stream will have lower latency and be

easier to scale up but make it difficult for the CV model or the human operator to detect objects

of interest. The same trend is seen when the number of streams is increased, as shown by Table

3 below.

Table 3. Combinations of streams on a 2x2 video wall.

Latency / s Bitrate / bps Latency / s

8

160p 30 fps 160p 10 fps 240p 30 fps 240p 10 fps 3 (30 fps),

4 (10 fps)

1M (4

screens)

720p 30 fps 720p 30 fps 360p 30 fps 360p 30 fps 3 (30 fps),

5.5 (10 fps)

2.5M (4

screens)

While the aforementioned configurations are all optimal, the ideal configuration to be chosen

still depends on its application. For example, when there are more than 4 screens to be shown

at the video wall at a time, the resolution does not need to be as high, so using 240p or lower

is recommended, so as to minimise bandwidth consumption. When there is not much

movement captured, using the 10 fps settings is recommended since the bandwidth

consumption is lowered by a great amount, in exchange for slightly greater latency.

Performance of CV Model

Through the tests we conducted on our CV model to detect UAVs, we have obtained the

following data validation results, as depicted in the figures below.

Figure 8. Data validation results1 using the test dataset.

The mean Average Precision (mAP) is a standard metric used to analyse the accuracy of an

object-detection model, defined as the mean of the average precision obtained every time a new

positive sample is recalled. As illustrated by Figure 8 above, the CV model has demonstrated

a mAP of 0.437 when considering an Intersection Over Union (IOU) of 50% to 95% overlap,

a performance that is substantial for a model trained on fewer than 2,000 labelled images.

Figure 9. Graph of F1 score against Confidence.

The F1 score is calculated as the ratio of correctly predicted positive examples divided by the

total number of positive examples that were predicted and conveys the balance between the

precision and the recall. It is a popular performance metric for classification systems and is

generally more useful than accuracy, especially in cases with an uneven class distribution.

1
 Precision (P) represents the proportion of Resultant Detections meeting the real truth (i.e. the proportion of

bounding boxes being also part of the given labels). Recall(R) represents the proportion of the labels that actually

were reflected as bounding boxes in the test runs.

9

The F1 score of the model at a specific confidence level denotes how consistent the model is

at detecting the target object at that confidence level. As shown by the graph in Figure 9, the

biggest drop in the F1 score occurs at about a confidence of 0.4, meaning that a majority of the

detections have a confidence of 0.4 or higher.

Figure 10. Precision-Recall Curve.

The precision-recall curve shows the trade-off between precision and recall for different

thresholds. A large area under the curve represents both high recall and high precision, where

high precision relates to a low false positive rate, and high recall relates to a low false negative

rate.

As seen in Figure 10, our model demonstrates rather high levels of recall and precision, with

the precision only dipping to 0.6 at a recall of 0.95, meaning that in the best 95% of the dataset,

the model has a precision of at least 60%. This is partly because the model was occasionally

unable to detect the drone due to its small size and indistinguishable features, as seen in Figure

11 below.

10

Figure 11. Examples of UAV detection by the model.

CONCLUSION

Recommendations for transcoder configurations

The stream configurations to be used depend on the operational conditions, and the different

transcoding options allow the human operator to easily modify the stream settings to optimise

bandwidth usage depending on the scenario. In essence, resolution can be decreased if many

video feeds are being concurrently observed, as the numerous streams will be compacted into

the same screen with a fixed resolution, while frame rate can be sacrificed if the frame is mostly

static or the objects are moving relatively slowly, in which a slight delay in reaction time is

insignificant.

Ultimately, the available bandwidth is still the most important factor in the selection of a stream

configuration. If there is insufficient bandwidth, some parts of the stream quality have to be

sacrificed in order to ensure a continuous and smooth stream even under such circumstances.

Real-Life Applicability of CV Model

Although the UAV dataset had only about 1,500 images, it was able to generate a fairly robust

CV model. With more training images and precise labels, the CV model can be made more

consistent and reliable.

In addition, as the video streams are all piped back to a central receiver rather than being

analysed remotely on the various UGVs, this model can be continuously updated or substituted

with better alternatives and be supplemented by more power-hungry resources that can help

the model detect targets more effectively by conducting more extensive processing on each

frame received by the receiver.

11

LIMITATIONS OF STUDY

Due to the limitations of the COCO database, not all types of bags are able to be detected by

the CV model, and the detection is only accurate when the bag is upright and facing the camera.

This is infeasible in cases where the UGV is not able to adjust the angle of the camera and thus

the unattended bag may be missed out.

Future work could look at using 3D space identification to track objects blocked by obstacles

by using another camera that is able to track the relative x, y and z coordinates of that object.

This further enhances the tracking ability of the UGV, even in areas where the camera’s field

of view is partially obscured.

ACKNOWLEDGEMENTS

We would like to thank and express our deepest gratitude to our mentors, Mr Benjamin Eu, Ms

Elizabeth Ng and Mr Jeremy Tian for their invaluable support and guidance for the entire

duration of this project. Without their mentorship, this paper would not have come to fruition.

In addition, we would like to thank Ms Chua Hui Ru for her assistance in the administrative

portion of this project, as well as DSTA for providing us with the opportunity to participate in

Research@YDSP 2022.

12

REFERENCES

Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec, NanoCode012, Yonghye Kwon,

Kalen Michael, TaoXie, Jiacong Fang, imyhxy, Lorna, 曾逸夫(Zeng Yifu), Colin

Wong, Abhiram V, Diego Montes, Zhiqiang Wang, Cristi Fati, Jebastin Nadar,

Laughing, … Mrinal Jain. (2022). ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime

Instance Segmentation (v7.0). Zenodo. https://doi.org/10.5281/zenodo.7347926

Grunnet-Jepsen, A., Harville, M., Fulkerson, B., Piro, D., Brook, S. & Radford, J. (n.d.). An

Introduction to Intel® RealSenseTM Visual SLAM and the T265 Tracking Camera

(Version 1.0). Intel Corporation. https://www.intelrealsense.com/download/9275/?-

1818208019.1672666677.

Intel Corporation. (2018, 16 April). Unattended Baggage Detection Using Deep Neural

Networks in Intel® Architecture.

https://www.intel.com/content/www/us/en/developer/articles/technical/unattended-

baggage-detection-using-deep-neural-networks-in-intel-architecture.html

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... & Zitnick, C. L.

(2014, September). Microsoft coco: Common objects in context. In European

conference on computer vision (pp. 740-755). Springer, Cham.

Lindholm, V. (2022). Unmanned Ground Vehicles in Urban Military Operations: A case

study exploring what the potential end users want.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., …

Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine

Learning Research, 12, 2825–2830.

Schmidt, P. (2019) Intel® RealSenseTM Tracking Camera T265 and Intel® RealSenseTM

Depth Camera D435 - Tracking and Depth (Revision 001). Edited by James Scaife

Jr., Michael Harville, Slavik Liman, Adam Ahmed, Intel Corporation.

https://www.intelrealsense.com/wp-

content/uploads/2019/11/Intel_RealSense_Tracking_and_Depth_Whitepaper_rev001.

pdf?_ga=2.257078728.299532539.1672835296-1818208019.1672666677

https://doi.org/10.5281/zenodo.7347926
https://www.intelrealsense.com/download/9275/?-1818208019.1672666677
https://www.intelrealsense.com/download/9275/?-1818208019.1672666677
https://www.intel.com/content/www/us/en/developer/articles/technical/unattended-baggage-detection-using-deep-neural-networks-in-intel-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/unattended-baggage-detection-using-deep-neural-networks-in-intel-architecture.html
https://www.intelrealsense.com/wp-content/uploads/2019/11/Intel_RealSense_Tracking_and_Depth_Whitepaper_rev001.pdf?_ga=2.257078728.299532539.1672835296-1818208019.1672666677
https://www.intelrealsense.com/wp-content/uploads/2019/11/Intel_RealSense_Tracking_and_Depth_Whitepaper_rev001.pdf?_ga=2.257078728.299532539.1672835296-1818208019.1672666677
https://www.intelrealsense.com/wp-content/uploads/2019/11/Intel_RealSense_Tracking_and_Depth_Whitepaper_rev001.pdf?_ga=2.257078728.299532539.1672835296-1818208019.1672666677

13

ANNEX

Table 4. Test results for various transcoding configurations.

Configurations Performance

Resolution Codec Frame

rate / fps

Bitrate /

kbps

Latency

/ s

CV Bandwidth

Usage /

kbps

Remarks

720p H264 30

(source)

3,000

(default)

2 ~ 100% ~ 3,000

720p 30

(source)

1,000 2.5 ~ 99% ~ 1,000

720p 30

(source)

300 2.5 ~ 99% ~ 500

720p 30

(source)

30 2.5 < 70% ~ 100 Stream is

not smooth

(some

frames

skipped),

false

detections

720p 30

(source)

80 2.5 < 80% ~ 200 Artefacts

start

appearing,

sometimes

doesn’t

identify

correctly

720p 30

(source)

120 2.5 ~ 90% ~ 250 Image is

rather

blurry

720p 30

(source)

200 2.5 ~ 99% ~ 300

720p 10 120 4 ~ 99% ~ 100

720p 10 60 4.5 ~ 70% ~ 100 A lot of

artefacts on

screen,

sometimes

doesn’t

detect bag

14

720p 30

(source)

200 2.5 ~ 99% ~ 300 Uses more

GPU

360p 30

(source)

36

(default)

2.5 100% ~ 400

360p 30

(source)

150 2.5 ~ 99% ~ 220

360p 30

(source)

50 2.5 < 90% ~ 60

360p 30

(source)

80 2.5 ~ 99% ~ 100

360p 30

(source)

30 2.5 < 50% ~ 80

360p 30

(source)

80 2.5 ~ 99% ~ 100

360p 10 80 4.5 ~ 99% ~ 80

360p 10 50 4.5 ~ 99% ~ 60

360p 10 30 4.5 < 90% ~ 40

240p 30

(source)

145

(default)

2.5 100% ~ 150

240p 30

(source)

50 2.5 ~ 99% ~ 60

240p 30

(source)

10 2.5 < 50% ~ 30 False

detections,

very blurry

240p 30

(source)

30 2.5 < 90% ~ 40

240p 30

(source)

40 2.5 < 90% ~ 50 Flickering,

sometimes

doesn’t

detect

240p 30

(source)

50 2.5 ~ 99% ~ 60

240p 10 50 3 ~ 99% ~ 70

15

240p 10 30 3 < 80% ~ 50

160p 30

(source)

105

(default)

2 ~ 99% ~ 120

160p 30

(source)

40 2 ~ 50% ~ 50

160p 30

(source)

70 2 ~ 99% ~ 90

160p 30

(source)

50 2 ~ 99% ~ 60

160p 30

(source)

50 2 < 90% ~ 80 Stops

detecting

bag

sometimes

randomly

160p 10 50 3.5 ~ 99% ~ 80

160p 10 30 3.5 ~ 99% ~ 40

160p 10 20 3.5 < 70% ~ 40

160x90 30

(source)

50 - 0% - -

